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Abstract
There are currently hundreds of known pulsars being tracked and regularly observed. Often, pulsars with more
interesting activity such as the Crab or Vela pulsar are observed nearly daily, while others as infrequently as
months. We used TEMPO3 (unreleased, Patrick Weltevrede) to generate times of arrival (TOAs) for fake
pulsars at near periodic intervals twice per day. To investigate four different observation strategies (periodic,
logarithmic, geometric, arithmetic) we separated specific TOAs from the datasets using four governing equations.
These TOA sets were then used to explore the abilities of TEMPO2 to retrieve glitch parameters for glitches of
various complexities. We found that at frequent observation cadence, there is little effect from strategy on fitted
glitch parameters. However, as observations become less frequent, there is evidence to suggest that periodic
observations retrieve glitch parameters most effectively. We discuss the possible implications of our findings for
use in measuring real pulsar glitches.
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1 Introduction
Neutron stars are compact objects formed from massive stars in core collapse supernovae. Their masses are
then just low enough to avoid collapsing further into black holes. Due to conservation of angular momentum,
neutron stars often spin notoriously quickly. They are highly magnetised and emit beams of radiation which
follow the rotation of the star. Finding the rotation frequency, ν, and the time evolution of this number, is often
a more difficult task than one might think. With some work, the rotational properties of pulsars far from earth
can be precisely known, making them useful tools in physics, especially in testing Einstein’s general relativity.

Due to their extreme properties (strong magnetic field, high density, etc.) the behaviour of pulsars’ rotational
evolution with time is of particular interest for us to better understand physics at these extremes. Pulsars
are expected to slow with time due to conservation of energy as they emit radiation. Consequently, various
phenomena which cause spurious or initially unexpected results in the observable properties of a slowing pulsar
can allow us to learn the physical structure in the interior of these stars. One such phenomenon is known as a
’glitch’: a sudden spin-up event causing an increase in the rotational frequency, ν, near instantaneously. With a
glitch there is often also an associated change in frequency derivative, ν̇. Sometimes, there are one or several
exponential recovery components before ν̇ arrives at a semi-permanent value. Understanding the origin and
underlying physics causing each of the properties of a glitch can allow us to probe the deep interior of a pulsar,
furthering theories which cannot yet model such conditions [1].

In the pursuit of new science through pulsar astronomy, its limitations must be well understood. Many
pulsars emit in the radio frequency (sometimes in other parts of the electromagnetic spectrum also) and so
are observed from earth with radio telescopes. The amount by which we can effectively observe pulsars is
limited by several factors: there are more pulsars than radio telescopes and telescope time must be shared
fairly between radio astronomy projects. This poses a problem of deciding how and when to observe pulsars in
order to retrieve the most accurate estimations of their parameters. In this project we specifically explore how
observation strategies impact the retrieval of glitch parameters in radio pulsars.

For a long time it has been accepted that observing a pulsar more often improves the ability to retrieve
parameters via algorithmic fitting. Pulsars deemed interesting, like the Crab pulsar∗ or others which glitch
regularly, are observed sometimes with near daily cadence (where cadence refers to the frequency or rate of
observations) [2]. Basu et al. (2019) [3] discuss at length the difficulty in differentiation of pulsar glitches from
the similar phenomenon, timing noise, at a multitude of different observation cadences. In several cases they
conclude that a higher rate of observations is required to identify smaller glitches. Additionally, it was shown by
Dunn et al. (2021) [4] that rigidly periodic observations can cause ambiguity in retrieved parameters. Marshall
et al. (2004) [5] observed a glitching pulsar with a logarithmic cadence in order to keep phase uncertainties low.
Therefore, it has been shown that other other observation strategies are worth investigating in a quantitatively
comparative way: the inspiration for this project.

To make objective statements about particular observation strategies, one must observe the same pulsar and
attempt to parametrise the same glitch. For each strategy to be fairly tested, they must be working with data
over the same amount of time, and with roughly the same number of total observations. A strategy observing
at a much higher overall cadence is bound to perform better. To ensure each strategy is measuring the same
glitch, higher cadence data can be sampled with given strategies; observations not in accordance to that strategy
should be removed from all parameter retrieval processes. Two possible methods emerge: the sampling of high
density observations from frequently observed pulsars (such as the Crab) or the sampling of simulated pulsars.
The latter option is chosen as we are able to control the parameters of a glitch and know them perfectly.

We present four observation methods to compare for this project: arithmetic, geometric, logarithmic and
periodic. Arithmetic observations increase the gap between observations by a constant amount of time after
each observation. Logarithmic is similar, but observation time increases in logarithmic space. A geometric
strategy is achieved by multiplying the observation gap by a constant (> 1) after each observation. Periodic
observations wait a constant amount of time between observations.

The goal of this project is to come to quantitative conclusions on the effects of observation strategy on the
retrieved and fitted values of pulsar glitch parameters. We aim to investigate each of the strategies above at
several different overall cadences on several glitches of various complexity. This way, in addition to comparing
strategies to one another, they can be compared to themselves in specific scenarios, reducing the possibility of
making a conclusion that may only hold sometimes. Pulsars such as the Crab and Vela are observed so often
that to employ alternative strategies such as the ones described in this project, they must be studied under
separate assumptions (see Section 3.3). Instead, we look to improve the quality of glitch pulsar astronomy for
the hundreds of pulsars observed on timescales of days to months, where average time between observations

∗A famous pulsar in the Crab Nebula: a supernova remnant first spotted in 1054AD
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CHAPTER 2. THEORY

exceeds a few days. We intend to better understand if the structure of observations can be rearranged to retrieve
more accurate parameters and eliminate ambiguities without changing the overall number of observations.

2 Theory

Figure 2.1: Assumed cross-section of a pulsar. Figure from [6].

2.1 Pulsars and Radio Astronomy
A pulsar is a type of rapidly spinning, highly magnetised neutron star. They are characterised by sweeping
beams of radiation visible for brief moments during their rotation and are often compared to lighthouses as a
result. Often, the radiation from the beams (or pulses, hence pulsars) lies in the radio spectrum, and therefore
can be observed from Earth using radio telescopes. The formation of neutron stars follows from the end of
massive progenitor stars with core masses above 1.4M⊙, which collapse in type II supernovae, leaving behind
comparatively tiny compact objects∗. In cases where the neutron star still exceeds the TOV mass limit† it will
collapse further into a black hole [6].

Following a core collapse, as neutron stars have such a small radius compared to their progenitor stars, by
conservation of angular momentum they must increase the speed at which they rotate by a significant margin.
Frequently pulsars rotate with periods less than a second. Those with periods shorter than order 1ms are
referred to as millisecond pulsars (MSPs). Coupled tightly to the fast rotating star exists its magnetic field,
extending beyond the radii of the star and dominating all nearby processes due to its strength. The dipole of the
magnetosphere is misaligned with the neutron star’s rotational axis, causing all associated emission processes to
be directional and co-rotating with the star, providing the observed pulses.

Nearly all pulsars are always observed to be spinning down [7]. That is to say, the rate of their rotations are
reducing with time. Due to energy conservation, a moving magnetic field will induce a counter-effect, causing
the pulsar to lose energy with time. This loss of angular momentum is characterised by the breaking index, n,
defined by ν̇ = −kνn, where ν and ν̇ are the frequency and spin-down rate respectively, and k is some arbitrary
constant. The value of n is expected to be exactly 3 for only magnetic dipole breaking, but most pulsars have a
breaking index lower than this, implying other methods of energy loss such as particle outflow [6].

While the full internal structure of a pulsar is not known, a simple model contains two main components: a
rigid crystalline exterior and a superfluid interior, as shown in Figure 2.1. Starting from the outermost point,
the star’s crust is initially made from heavy nuclei like iron. Deeper into the crust, it becomes energetically
favourable for electrons and protons to form neutrons, resulting in an abundance of nuclei with an abnormally
high number of neutrons. Further still into the star, these heavy nuclei become unstable and the majority of
matter is found as a neutron fluid, tightly coupled to the core [6].

At higher densities closer to the centre of the pulsar, our models of physics begin to break down and so
theory cannot fully predict what can be expected. It has been suggested that a fluid made entirely of quarks [1],

∗Around 10km in radius [6].
†The TOV limit is around 2M⊙: See https://en.wikipedia.org/wiki/Tolman-Oppenheimer-Volkoff_limit
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2.2. MECHANISMS FOR PULSAR IRREGULARITY

known as quark matter, may be present at the high densities in centre of the star, though no solid conclusions
have been made.

2.2 Mechanisms for Pulsar Irregularity
Pulsars are remarkably stable. Their rotational periods can be found extremely precisely and therefore large
arrays of tracked pulsars are often used as galactic arrays of clocks ‡, the measuring of which can be used to
detect gravitational radiation [6, 8]. However, there exist two mechanisms by which the rotational rate of a
pulsar will deviate from a simple slow with constant ν̇. This section will discuss both phenomena: glitches and
timing noise.

Rarely, and somewhat unpredictably, a pulsar can rapidly experience a spin-up event known as a glitch. The
exact mechanisms by which a glitch is triggered are unknown but it is assumed to be due to one of two causes: a
sudden failure of the solid crust or a large-scale unpinning of superfluid vortices, causing a transferral of angular
momentum from the core to the crust. In the former case, it is assumed that as the neutron slows, it at some
point becomes energetically favourable for it to reduce its oblateness, causing crust-quakes [9]. Pulsars such as
the Crab appear to be well described by this method; however, many other pulsars, the Vela included, are not
[10].

The latter explanation is much more involved both mathematically and conceptually. Inner segments of a
neutron star are known to be superfluid; rather than traditional bulk motion one would expect in a rotating
fluid, angular momentum is carried in quanta by superfluid vortices, meaning that the total angular momentum
of the fluid is proportional to the density of these vortices. As the pulsar slows, the only way by which the
superfluid core can remain coupled to the crystal crust is through the migration of these vortices outwards.
However, upon reaching the nuclei at the crust, a vortex may become pinned to them, fixing their contribution
to the angular momentum and therefore decoupling the fluid from the crust. As the crust continues to slow,
which is an observable property due to the coupling of the magnetic field to it, the difference between the spin
rate of the crust and core increases, until eventually there is, for reasons not fully understood, a catastrophic
failure and rapid transferral of angular momentum to the core via the unpinning of the vortices [6]. Some models
propose this mass unpinning is triggered by the aforementioned crust-quakes [11].

(a) Frequency deviations/residuals of a standard glitch with
the pre-glitch model subtracted. Magnitudes of ∆ν (the
gap), ∆ν̇ (the slope change) and τd (timescale of recovery)
all differ between pulsars and individual glitches.

(b) A plot of simulated residuals after a glitch occurs at
tg = 60000. Data points show a potential set of TOAs
which could be described by this glitch.

Figure 2.2: Representations of glitches in pulsar timing. 2.2a shows common glitch structure in terms of ν and
2.2b shows a potential residuals plot. Note the differing scales along the x-axis. Data is from simulated pulsars,
and described by glitch B in Table 3.2.

In addition to instantaneous changes in ν and ν̇, some glitches exhibit a form of recovery behaviour (known
as the post-glitch recovery or post-glitch response), where some fraction of the changes made to ν̇ are not
permanent, and will tend towards (but not fully back to) their pre-glitch values on timescales of seconds to
years [12]. The full structure of a pulsar glitch containing a single recovery component is shown in Figure 2.2a.
This project focuses on glitches with only one or two exponential response terms.

The second mechanism by which pulsars may exhibit irregularities in their rotation is timing noise: a
continuous wandering deviation in a pulsar’s expected spin properties. The origins of timing noise are not as
well understood§ as pulsar glitches, though it does appear to be a quasi-periodic switching between two modes

‡See pulsar timing arrays, or PTAs.
§Assuming that we believe current glitch models are at least partially correct.
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2.3. TIMING A PULSAR

of radio emission [6]. Sometimes, as a result of infrequent observation cadences, discrete jumps in ν and ν̇,
like those belonging to pulsar glitches, can appear the same as the smooth transitions belonging to timing
noise between two observations. Therefore there are often [3] cases where glitches cannot be distinguished from
timing noise: especially when the glitches are small or timing noise is strong. We will discuss in Section 3.3 the
reasoning behind not including timing noise in our pulsar models.

2.3 Timing a Pulsar
Simply observing a pulse and noting down its arrival time cannot be done. Individual pulses themselves are too
weak to be individually identified in noise (i.e they have a low signal to noise, S/N, ratio). For a pulsar to be
found at all, a fast Fourier transform (FFT) must be performed on some portion of the sky to find a periodic
signal in an observation and form a guess at its period before many pulses over a much longer period of time
(minutes to hours) can be ’folded’ onto one another, greatly improving the S/N ratio of the pulse.

The folded data reveals a pulse profile: the shape traced by the intensity of the radiation beam while it is
visible. The pulse profile can then be used to more accurately return arrival times of pulses in later observations
[13]. Recently, Wang et al. (2022) [14] quantitatively compared several methods used over the last few decades
by which pulsar arrival times can be calculated, the most common being the Phase Gradient Scheme (PGS)
introduced by Taylor (1992) [15]. This project does not delve into collection of arrival times, but it is worth
noting that methods akin to the PGS often collate uncertainties.

There is a significant dispersion effect on the light from pulsars due to frequency dependent scattering effects
caused by electrons in the line of sight of observation, an effect magnified by the large distances between a pulsar
and observer. Pulses need to be corrected (dedispersed) so that the they do not smear. Additionally, several
positional effects cause pulses to arrive at a telescope differently on varying timescales as a result of rotation
both in a day and around the sun, so the times of arrival (TOAs) are always adjusted so that they appear to
be measured from the solar system’s barycentre. Similarly, corrections are made to the TOAs to counteract
relativistic effects¶ caused by massive bodies near the line of observation [13].

Given some set of measured TOAs, a pulsar can have its properties estimated through fitting with timing
software packages such as TEMPO2 [16] or PINT‖. Methods such as these find a timing model which describe
the pulsar at some specific epoch, containing information on values of ν, ν̇, its position on the sky, any proper
motion components it may have, a measure of dispersion effects and more. These models get progressively more
complicated as more information is known about a pulsar, such as information about specific glitches, timing
noise, and whether the pulsar belongs to a binary.

When an observation is made of a pulsar, one arrival time (TOA) of a single pulse is retrieved, and has an
associated error formulated using some scheme (such as PGS) from sources such as the telescope uncertainty
and uncertainties in the known values required for each adjustment made to the arrival times as described
above. Knowing many TOAs can build up a picture of how a pulsar rotates. For instance, a pulsar modelled to
have only ν ̸= 0 would have each pulse arrive at some integer number of rotations after the previous. If acting
predictably enough, every pulse, even those not observed, can be numbered exactly. Considering that on average
pulsar spin periods are of order < 1s, precision is important and to solve for further complexity much data is
required.

With a number of pulse TOAs, the spin evolution can be fitted to an equation of form

ν(t) = ν0 + ν̇0(t − t0) + 1
2 ν̈0(t − t0)2 + . . . , (2.1)

from a Taylor expansion of the pulsar’s spin behaviour, frequently ignoring terms of order t3 or higher [6, 13].
ν0 is the value of ν at some period epoch t = t0. ν̇0 and ν̈0 describe both the spin-down and rate of change of
spin-down. The information in Equation 2.1 is often represented in terms of phase, ϕ, instead:

ϕmodel(t) = ϕ0 + ν0(t − t0) + 1
2 ν̇0(t − t0)2 + . . . , (2.2)

with ϕ0 representing a phase reference point at t = t0. A pulsar which follows its timing model perfectly will have
its TOAs occur at exactly integer numbers of ϕ. Pulses are therefore represented by residuals: their deviation
from expected arrival times (given by integer values of phase in a model), with respect to time.

Should a glitch occur, there exists a discontinuity∗∗ in ϕ and a post-glitch behaviour described by

ϕg(t ≥ tg) = ∆ϕg + ∆νg(t − tg) + 1
2∆ν̇g(t − tg)2 +

∑
i

∆νiτi(1 − exp(−(t − tg)/τi), (2.3)

¶E.g. Shapiro delay and other curved space effects. See https://en.wikipedia.org/wiki/Shapiro_time_delay
‖https://github.com/nanograv/PINT

∗∗Pulsars are rarely observed mid-glitch. In such scenarios they contain apparent rising term(s) [12].
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added to the model for t > tg. Similarly to Equation 2.2, a glitch occurring at t = tg is a Taylor expansion
of its effects on the spin, ν. ∆ϕg is a measure of the amount of pulsar turns lost during a glitch. ∆νg and
∆ν̇g refer to the the instantaneous and permanent changes in parameters ν and ν̇. The final term describes
the exponential recovery components in the glitch of which there may be one (i = 1) or multiple (i > 1). ∆νi

is the instantaneous change(s) in ν and τi is the decay time over which ∆νi decays [16, 17]. The structure of
a glitch in ν can be seen in Figure 2.2a. Typically, the pre-glitch model, νmodel, is subtracted, manifesting as
the pre-glitch structure being flat and the post-glitch structure being fully representative of the glitch; glitch
parameters can often be numerically small compared to ν and ν̇, therefore they can be better investigated this
way. Similarly, a residuals plot as described above can be seen in Figure 2.2b.

In the work of Zhou et al. (2022) [11] it is noted that ∼6% of pulsars have been seen to glitch, manifesting in
the pulsars residuals decreasing over time with expected pulses. Eventually, a pulsar model will ’lose coherence’
with data measurements, meaning that the model is more than a full rotation out of phase with the real pulsar
behaviour. Sufficiently large glitches can cause immediate loss of coherence, and are particularly difficult to
retrieve parameters for. The prevalence of timing noise in a pulsar increases the separating small glitch events
in the data, and increase the likelihood of losing coherence in larger glitches.

3 Method
This project details 3 main steps which we have used to come to objective comparisons of different observation
strategies: generated TOAs of pulsars described by parameters we know perfectly; code to sample the TOAs
at intervals described by the strategies, and TEMPO2 to time and retrieve parameters for the pulsar and its
glitches via algorithmic fitting.

3.1 Observation Strategies

Figure 3.1: A comparative event plot corresponding to three examples of observation strategies with constant
and equal average cadences of 5 (kp = 5, kl = 25.7196, kg = 1.6394). An observation on any plot is represented
by a gray vertical line. Periodic observation strategy has equally distributed observation times. Both logarithmic
and geometric observation strategies exhibit periodic structure, represented by the strategy period, Ps. The
strategies pictured restart (shown by the green/thicker line) at a cadence of 0.5d when ∆T ′ exceeds Tmax. Shown
once by the red line in the logarithmic strategy is where the next observation would have occurred had the
strategy not restarted (for instance if Tmax was higher).

Periodic observations are done by the majority of pulsar experiments to date. To the best of our knowledge,
only two other groups have considered doing otherwise for reasons relating to improving precision. For instance,
the MeerKAT survey observes newly discovered pulsars with a pseudo-logarithmic cadence to establish a good
model quickly before reverting to a periodic strategy [18]; the goal of the non-periodic observations was to reduce
the cadence over time rather than improve precision or eliminate degeneracy. A similar but differently motivated
example is given by Marshall et al. (2004) [5], where they instead chose a logarithmic∗ strategy in order to
keep phase uncertainties below 0.1 cycles. Dunn et al. (2021) [4] talks in great detail about how exceptionally
periodic observations can cause degeneracy in the retrieved results and mention that software like TEMPO2
can sometimes underestimate the sizes of glitches.

We propose three alternative observing strategies for this project: arithmetic, geometric and logarithmic.
We additionally perform all of our experiment on fake, periodically observed pulsars in order to create fair
comparison and a direct analogue to the methods by which real pulsars are observed in research. Periodic
observations can be described by

∆T ′ = ∆T = kp, (3.1)
∗It is unclear if their definition of logarithmic observations is similar to ours.
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3.1. OBSERVATION STRATEGIES

where, assuming we have just performed an observation, ∆T is the time since the previous observation, and
∆T ′ is the time until the next observation. Parameter kp is an arbitrary constant equal to the number of days
between observations. An equation similar to 3.1 can describe all strategies, where some operation acts on the
time between previous observations to find the time to wait until the next observation, and each strategy can be
parametrised by an arbitrary constant k, with a subscript denoting the strategy. The need for other constants
will emerge later.

Similarly, geometric observation cadence can be described by

∆T ′ = kg∆T . (3.2)

Geometrically observing multiplies the TOA gap by a constant, kg, after each TOA is taken. Geometric cadence
at kg = 2 would cause the time between observations to double after each.

Continuing, an arithmetic strategy takes the form of

∆T ′ = ∆T + ka, (3.3)

as one might expect. Parameter ka describes the amount of time the observation gap increases by with each
successive measurement.

Finally, the logarithmic strategy takes the form of

∆T ′ = kl ln
(

∆T

10 + 1
)

, (3.4)

where the division and addition by constants 10 and 1 respectively are to reduce runaway and convergence
effects found in the equation ∆T ′ = kl ln (∆T ). Constants kp, kg, ka and kl are somewhat arbitrary and govern
how a strategy changes its observation gaps. It may be clear that the above equations can only work if there is
an initial value assigned to ∆T , given as ∆Tstart. In this project our lowest start cadence of ∆Tstart = 0.5d was
motivated by the observation cadence of the most frequently observed pulsars [2]. In lower cadence scenarios,
other values of ∆Tstart were chosen and are detailed in Figure 3.1.

In addition to the values of k and ∆Tstart, there exists one other parameter important to all strategies except
periodic: the "maximum gap", Tmax. The need to introduce this constant is best demonstrated through an
example: geometric sampling at kg = 2 would quickly cause observations to be spaced at intervals of extremely
high powers of 2 (i.e. 1 day, 2d, . . . 128d, 256d, etc.). Despite the earlier high sampling of every few days, this
strategy becomes near useless at late times. To combat this runaway effect, we implement a maximum time
between observations, Tmax: if the next observation would occur at a time beyond Tmax, it instead happens at
∆Tstartfor that strategy as described in Table 3.1. The effect of this can be seen in Figure 3.1. The total time
between the first observation in a strategy and the last before Tmax is exceeded is referred to as the strategy
period, Ps. It should be noted that any value of Tmax could be selected, and should be chosen based on the
scenario.

Figure 3.2: Demonstration of average cadence (AC) against the values of k for all of the explored cadence
strategies at Tmax denoted by Table 3.1. Note that all subplots share a y-axis. Locations in the plot where a
horizontal line of constant AC (such as the dashed pink line above) crosses a line from a strategy shows values
of kg,l,a,p which share a number of observations/number of TOAs per unit time. Magenta points signify the
values of k chosen.

Following from these equations, it is important to ensure that we can pick values of k, Tmax and ∆Tstart
for each strategy that on average result in the same average observation cadence. Two strategies working at a
roughly similar average cadence (AC) will observe roughly the same number of times over an equal amount of
time. Average cadence, or AC, refers to the average number of days between observations. Confusingly, high
cadence refers to frequent observations but a high value of AC implies the opposite. Extreme care has been
taken to in this report to ensure what is being discussed is clear. Figure 3.2 demonstrates how multiple values
of k for the same strategy have an equal AC. The AC can be easily calculated by dividing the observations in
one strategy period by the strategy period itself. To fairly compare two strategies, their AC must be equal.
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3.2. SIMULATION

For our project, we decided to try strategies at three different ACs (5d, 15d, 30d) specifically so it could be
investigated if some strategies only outperform others at higher/lower AC. Table 3.1 shows the chosen ACs and
the corresponding chosen values of constants. Our values of k were picked to ensure that each strategy retrieved
5-10 TOAs in one Ps before restarting.

AC Strategy ka,g,l,p Tmax ∆Tstart Num. obs. Num. sims.

5

arithmetic 1.5000 10 d 0.5d 593 10, 000
geometric 1.6394 20d 0.5d 591 10, 800

logarithmic 25.7197 20d 0.5d 594 10, 500
periodic 5.0000 N/A N/A 599 10, 500

15

arithmetic 4.3333 30d 2d 196 10, 000
geometric 1.6693 50d 2d 194 10, 000

logarithmic 34.7648 50d 2d 196 10, 000
periodic 15.0000 N/A N/A 199 10, 350

30

arithmetic 1.8063 58d 2d 102 10, 000
geometric 3.5075 90d 2d 95 10, 000

logarithmic 35.2264 70d 2d 95 10, 000
periodic 30.0000 N/A N/A 99 10, 000

Table 3.1: A table to show the specific cadence constants, ka,g,l,p, Tmax, ∆Tstart , used and the number of
observations they gave over the observation time.

Glitch ID Parameter Value

A

ν 4 Hz
ν̇ −1.8 × 10−12

∆ν 1 × 10−7

∆ν̇ −4.2 × 10−15

B

ν 4 Hz
ν̇ −1.8 × 10−12

∆ν 1 × 10−7

∆ν̇ −4.2 × 10−15

∆νd 3.23 × 10−8

τd 50d

C

ν 4 Hz
ν̇ −1.8 × 10−12

∆ν 1 × 10−7

∆ν̇ −4.2 × 10−15

∆νs 4.70 × 10−8

τs 5d
∆νl 3.23 × 10−8

τl 100d

Table 3.2: A table depicting each of the simulated glitches and their respective parameters.

3.2 Simulation
In this project, "simulation" refers to the generation of fake pulsar TOAs over a given period of time, fitting
glitch parameters using an incomplete model and then investigating how much the fitted results differ from the
true values. Performing this multiple times with varying start and end points can provide a better picture of
how a method performs on average.

Each subset of simulations acts upon a set of 6000 TOAs, generated by TEMPO3 (unreleased, Patrick
Weltevrede [19]) and distributed randomly (with uniform probability) onto the pulses described by the pulsars
in Table 3.2. They span 3000 days†, causing an AC for the whole data set of 0.5d. Each TOA was generated
with an associated uncertainty in arrival time of 100µs, which is typical [14]. The TOA data was then sampled
at a particular strategy, with an algorithm selecting only the TOAs which lie near to the times of observation
described by that strategy. Rarely, a high cadence observation would have its closest TOA be a previously

†MJD 58500-61500
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3.3. ASSUMPTIONS AND CAVEATS

selected one; in such scenarios the next closest TOA was chosen instead. This generation process is repeated a
number of times per simulation set.

Strategies with non-constant cadences, changing on a cycle, will have regions in their strategy both where the
observation frequency is higher and where it is lower than the AC. This is a good motivation behind investigating
alternative observation strategies to begin with, as mentioned earlier it can be used to keep phase uncertainties
low or remove a degree of ambiguity. However, it does create "good" and "bad" regions for a glitch to occur in
an observation strategy. Glitches occurring where the observation separation is highest will be the most difficult
to solve correctly as it is much more difficult to resolve a glitch occurring some million(s) of pulses ago versus
one which occurred in the previous few days: there is less time for the behaviour to diverge from a descriptive
model. It should be noted that the inverse is also true for regions of high observation cadence. Therefore, when
generating TOAs, it would be unfair to compare the results of a periodic observation strategy to another which
happens to have its highest sampling rate at time t = tg when the glitch occurs. To counteract this effect, we
introduced a random offset to the start of the dataset on an individual simulation basis. As a result, the start
point and therefore the high cadence points, which are separated by time Ps, are varied in each simulation by
an amount up to Ps (i.e. 0 ≤ offset ≤ Ps). A TOA set is sampled at different offsets a number of times less
than or equal to ∼ Ps/0.5d‡, before a new one is generated. Every sampling of each TOA file is passed through
TEMPO2 for fitting and parameter retrieval, and stored for later plotting. TEMPO2 is setup in different ways
for the three complexities of glitches which were investigated as detailed in Table 2.2.

The true parameters of the glitches simulated are described in Table 3.2. Simulations ran are different
permutations of glitches with differing observation strategies. The parameter values of the glitches were chosen
to reflect real values of glitches found in the JBO glitch catalogue [20]. Glitch A in Table 3.2 contains no recovery
component, only an instantaneous jump in ν and ν̇. Glitch B introduces a single recovery component of order
τd = 50d, longer than the average cadence for all explored strategies. Glitch C contains two separate exponential
recovery components, of order 5d and 100d. The shorter of the two recovery components, with parameters ∆νs

and τs, has a timescale which matches the average cadence of the most frequent observation strategy (5d). This
has been done in order to explore the quality of results as observation cadence exceeds the timescale of decay.
The longer of the exponential responses has parameters ∆νl and τl.

Time constraints stopped all possible permutations from being trialled, so emphasis was placed on the more
complex glitches, B and C, as preliminary results revealed very little difference between quality of results between
strategies for simpler glitches. Each permutation of strategy and glitch consisted of a number of TOA files and
sampling offsets such that their product was roughly 10,000; this number of simulations was motivated only by
the total runtime being approximately 1 hour.

3.3 Assumptions and Caveats
In order to retrieve useful results, we have made a handful of assumptions in our simulations. Each one is listed
here with justification.

In order to ensure that convergence algorithms are not working from the value 0, when provided with data
for a glitch in generated TOAs we also provide it with an initial model, which perfectly describes the pre-glitch
behaviour of the simulated pulsars. In fitting, these two parameters are still free to change, as would be the
case in a real post-glitch scenario, but exact pre-glitch values allow any convergence algorithms more iterations
in glitch parameter recovery over spin parameters. This assumption is motivated by many real tracked pulsars
having extremely well described models before a glitch occurs [21]. It can be expected that with real pulsars,
provided there are no systematic errors, known parameters in literature are on average distributed around the
true values.

Coherence in pulsar astronomy is the property that the measured post-glitch residuals maintain some amount
of identifiable structure, and can be directly compared to figure similar to 2.2b. We make this assumption as it
often is true for small and medium sized glitches. Larger glitches are much easier to solve by hand and therefore
could be adjusted to re-establish coherence manually. For similar reasons, we assume that the glitch epoch can
always be roughly known by a human observer; that is to say that the two TOAs between which the glitch
occurred can be easily identified. Another way by which we maintain coherence in our simulations is by allowing
TEMPO2 perfect knowledge of the pulse numbers of each pulse: this ensures that the pulsar will not choose a
solution which has lost a single rotation or more during the glitch.

The above assumption can be restated as an assumption of human solvable glitch. Glitches occur infrequently
enough in pulsars such that it is not unreasonable to assume than an observer would be able to check that
algorithmically fitted estimations are sensible. This assumption helps us in simulation as it allows us to throw

‡Ideally we would generate a new set of TOAs for every simulation, but this is computationally inefficient. The maximum
number of offsets which can be simulated before we would start repeating results is equal to Ps × 1/AC. AC here of the whole
dataset is 0.5d
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out estimations which are clearly erroneous and, in a realistic scenario, would be nudged towards a more feasible
model by some astronomer.

Additionally, we are always assuming that there is no timing noise. Espinoza et al. (2014) [22] show that
there is good reason to believe that the trigger mechanisms between timing noise and glitches are different,
providing some motivation to avoid timing noise in our simulations. Hobbs et al. (2010) [23] show that for
pulsars of a young characteristic age (τc < 105), the recovery component of previous glitches often dominates
over what is observed as timing noise. Older pulsars such as millisecond pulsars tend to exhibit very small
amounts of timing noise, but also glitch incredibly rarely [24]. Timing noise is an important factor seen to
obscure glitch parameters, especially for smaller glitches, adding difficulty that is not present in our simulations.
Due to the apparent quasi-periodic nature of timing noise [6], over shorter timescales of order months around
a glitch, it can often be ignored or its effects are reduced. Though our simulations span roughly 8 years, our
generated TOAs are acting predictably and without timing noise, so conclusions will hold true over timescales
where timing noise can be safely ignored.

As detailed before, our simulations are of glitches made up of either no recovery components (glitch A in
Table 3.2), a single recovery component (glitch B) or two recovery components (glitch C). For ease of simulation
by time constraints, our algorithm always knows the number of exponential components present, but this ended
up causing some problems later. Only single sizes of each of these glitches were picked, each sharing many
parameters with one another and being on the larger side in magnitude [20]. Ideally, given enough time, we
would have trialled additional glitch sizes. Luckily, due to the non-existence of timing noise, it can be assumed
that results would be similar for smaller glitches, as they would still be identifiable rather than being lost in
noise [22]. Similarly, in the data samples generated, only a single glitch occurs in > 8yrs. In truth, this is
unlikely for some pulsars and likely for others. Using the same justification as above, our pulsar predictability
means that comparative results would apply over shorter lengths of time (i.e. the length of time before another
glitch occurs).

Akin to how we provide a perfect pre-glitch solution, we allow guesses of the exponential timescale equal to
the exact timescale itself for fitting in TEMPO2. In realistic scenarios, typically only the order of magnitude can
be discerned through visual inspection of the residuals, but this would introduce a bias in a particular direction
with our simulations, so convergence is allowed to begin on the true parameters and we let the timescale wander
through free fitting of all parameters.

Finally, the errors given on TOAs by TEMPO3 [19] are perfectly 100µs in every arrival time. The value
of 100µs is on the higher end of typical for errors given by a common TOA creation method, PGS [14]. This
number on all TOAs provides the error on all derived values from TEMPO2, which are found to be significant
underestimates in our case, derived parameters are found to deviate significantly from the sample mean frequently,
as will be shown in Section 4 below.

4 Results
Each glitch and its various parameters are detailed in respective figures. The information on averages and
standard deviations is also presented in three tables for glitches B and C. Naturally, we cannot assume that all
the fitted variables are independent and Gaussian, and so we also present a handful of corner plots to ensure
that we understand the correlations in the parameters [25]. Additionally we present contour plots tracing the
density of scatter plots associated with glitch parameters ∆ν, ∆ν̇, and any response magnitudes and timescales.

While it is seen that most strategies at all cadences will on average be able to retrieve the correct parameters∗,
the spread on these calculated model solutions given by TEMPO2 will be used as an analogue for the quality of
a strategy: a strategy able to retrieve the most accurate results most frequently is a better observation strategy
than one with an increased likelihood to fit parameters further from their true values. For each glitch we present
tables of retrieved values averaged from glitch values fitted by TEMPO2, with errors given by the standard
deviation on the averaged values.

As glitch A contains only an instantaneous jump in ν and ν̇, with no recovery components (the final term
in Equation 2.3 = 0), it is an unrealistic scenario, as often glitches exhibit at least some additional behaviour,
such as that seen in glitch B and C below. As a result and to save space we choose not to present it in the
same way. Correlations between parameters are similar to glitch B and any detail we would have presented here
would have been restated for glitch B anyway. Simulation of glitch A was done as a stepping stone to increasing
complexity to the level found in glitch B and C.

One important process by which we can investigate the validity of our results is to justify the correlations
found in corner plots in figures 4.2 and 4.5, showing parameter correlation in glitch B and C respectively. It
should be noted that the corner plots presented are collated from all strategies at an AC of 5d for each glitch. In
all but a single case (discussed later) the correlations appeared to be consistent between the different strategies.

∗Especially as a result of some of our assumptions
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4.1. GLITCH B

The only difference at higher values of AC was some correlations lessening or in some cases being entirely
removed. This is expected as the restrictions on a model by infrequent TOAs are less harsh compared to those
which are more frequent. In real pulsar astronomy, understanding parameter correlation can help derive errors
and uncertainties on found values of real pulsar glitches (see Bayesian techniques in pulsar astronomy [26]). As
such, the presentation of our corner plots is a necessary first step in understanding the underlying statistics
which may emerge differently in employing more complex observation strategies.

4.1 Glitch B

Figure 4.1: Contour plots showing the distribution of retrieved glitch parameters for glitch B, split into individual
two dimensional plots separated by AC and retrieved component (i.e. base parameters, recovery parameters).
Contour lines differ between observation strategy as shown in the legend. The inner contours contain 67% of
points and outer contours contain 99% of points. The shape of the underlying point scatter is maintained.

Parameter AC Arithmetic Geometric Logarithmic Periodic
5 0 ± 10 0 ± 10 0 ± 10 0 ± 10

⟨∆ν⟩ − ∆νtrue (×10−12) 15 0 ± 19 0 ± 24 0 ± 20 0 ± 17
30 1 ± 45 2000 ± 6600 29 ± 810 0 ± 29
5 0 ± 7 0 ± 7 0 ± 7 0 ± 6

⟨∆ν̇⟩ − ∆ν̇true (×10−20) 15 0 ± 12 0 ± 12 0 ± 12 0 ± 11
30 0 ± 19 0 ± 18 0 ± 19 0 ± 17
5 −1 ± 14 0 ± 14 −1 ± 14 0 ± 13

⟨∆νd⟩ − ∆νd,true (×10−11) 15 0 ± 27 0 ± 32 −1 ± 29 0 ± 25
30 −1 ± 56 700 ± 2400 10 ± 310 −1 ± 40
5 0 ± 6 0 ± 6 0 ± 6 0 ± 6

⟨τd⟩ − τd,true (×10−1) 15 0 ± 11 0 ± 12 0 ± 12 0 ± 10
30 0 ± 20 0 ± 39 0 ± 23 0 ± 16

Table 4.1: A table showing the average distance from the true values retrieved by TEMPO2 when fitting glitch
B. Errors quoted are standard deviations of each sample of ∼10,000 points. It is expected that the the mean
difference is around 0 and the standard deviation represents the spread of the data, varying massively in some
cases. True values can be found in Table 3.2. Values are rounded to similar precision, but no more than two
significant figures (on the standard deviation).

Glitch B results detail the first set of simulations which may be comparable to some real glitches under our
assumptions. There exists both instantaneous jumps and a singular exponential recovery component. We present
corner plot Figure 4.2, containing the two new parameters ∆νd and τd. It can be seen that some parameters
which were correlated in Figure 4.4 are no longer correlated, or correlated to a lesser degree for all cadence
strategies. Again there was little difference between correlation depending on the strategy used and so the data
was aggregated for use in the corner plot.
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4.1. GLITCH B

Figure 4.2: A corner plot for for glitch B collated from ∼40,000 data-points measured using all three strategies
at an AC of 5. Note strong correlations between parameters ν and ν̇, epochg and ∆νd; there are also anti-
correlations in parameters ∆ν and epochg (tg), ∆νd and epochg (tg), ∆νd and τd.

Additionally, Figure 4.1 shows the retrieval quality at each of the three trialled cadences. Parameters ∆ν,
∆ν̇, ∆νd and τd are seen to follow near identical distributions at high (AC = 5d) cadence in Figure 4.1. Roughly
similar results follow in the medium (AC = 15d) cadence contours, though it is clear that geometric is beginning
to fall behind: its contours and therefore retrieved parameter distribution no longer coincides with the other
strategies and therefore is said to be returning less accurate parameters. This can also be seen in Table 4.1,
where the standard deviation (quoted as the error) of geometrically retrieved parameters for ∆ν and ∆νd in
all cases is larger than the same for any alternative strategies. It should be mentioned that in ∆ν̇ and τd, the
strategy performs roughly the same as its peers.

Advancing to the low cadence (AC = 30d) case, the difficulty geometric observing has in estimating glitch
parameters is only amplified, now falling behind in all but the value of ∆ν̇. Logarithmic observing is also
significantly worse at retrieving parameters in the instantaneous changes to ν (i.e. ∆ν and ∆νd).

To our knowledge, all of the correlations seen in Figure 4.2 are as expected. Particularly of note is the
anti-correlation between parameters ∆νd and τd. The following is best explained in tandem with Figure 4.3.
Suppose two near identical models which describe a set of given TOAs, one of which has a higher ∆νd than the
true value, and the other, a lower. For the set of TOAs following a glitch, TEMPO2 fits a supposed model to
the data and retrieves a number of parameters; for both models to describe the TOAs within their error bars, a
larger instantaneous jump in ν would require a faster (smaller) response timescale, τd, such that the value of ν
is pulled closer to the value described by the post-glitch TOAs in a timely manner. The model with a lower ∆νd

11



4.2. GLITCH C

Figure 4.3: Fictitious plot demonstrating how two differing models may be good fits for the same set of TOAs.
Two models with differing values of ∆νd and τd describe behaviour exhibited in the TOAs well. Similar plots
can be used to describe all correlations. As before, pre-glitch model of ν has been subtracted from data.

is not under time-constraints quite as strict to adhere to post-glitch observation and in fact, a similar response
might overshoot the behaviour described by the arrival times.

Similarly, Figure 4.2 shows more easily justifiable correlations in glitch epoch (tg) and both ∆ν and ∆νd.
Should the time at which a glitch occurs be earlier than its true time, the model must also have a greater
instantaneous shift in ν as a result of the increased time the pulsar is given to spin down to the value of ν
described by the post-glitch TOAs. This manifests as an earlier tg being correlated with greater values of ∆ν
or ∆νd, as seen in the corner plot. The inverse also applies: if a glitch is thought to occur late, it must also be
modelled with a reduced shift in ν to account for the lessened time it has to align with observation, hence the
correlation.

It is important to note that even though many of these parameters are correlated, the scale of their spreads
must be taken into account. Take for instance the correlation in ν and ν̇: it may be difficult to imagine a
solution with which a differing ν may be compensated for with a similarly different ν̇. This is analogue to
fitting multiple straight lines to N roughly collinear points. As these are not glitch parameters, TEMPO2 has
data from the span of ∼8 years to fit to, equivalent to N of order thousands. νtrue = 4 Hz, and the scale of
its standard deviation shown in Figure 4.2 is of order 10−12: a profoundly accurate measurement. The small
amount that it does vary is compensated for by a similarly small variation in ν̇, but compared to some other
correlations, both these parameters are effectively constant. The corner plots must be read with caution and
the scales of variation carefully examined before definitive conclusions are made in all cases.

In some scenarios for the geometrically sampled TOAs, TEMPO2 would estimate a solution with a phase
offset, ∆ϕg, of roughly 60 rotations†. This is a curious result as we should expect to know perfectly the number
of lost rotations when TOAs contain pulse number information. We decided for our results we would filter out
all these solutions, with justification from our assumption of human solvable glitch: no astronomer would accept,
without some other motivation, these solutions as realistic.

4.2 Glitch C
Glitch C is also described in Table 3.2. It differs from glitch B by containing two different exponential responses,
at two vastly differing timescales, rather than one. The short response, denoted with a magnitude ∆νs, has a
timescale τs = 5d. The longer, with magnitude ∆νl has a timescale τl = 100d. The shorter timescale is exactly
equal to the average cadence of the most frequent observations. Pulsars such as the Vela often contain one or
more response components on timescales as short as this and sometimes even of orders seconds to minutes [12].
The averaged retrieved glitch parameters with their sample standard deviations can be found in Table 4.2.

We present corner plot Figure 4.5, where it can be seen that some of the correlations discussed in 4.1 are no
longer present or are altered. For instance, correlations between timescales such as τs,l and response magnitudes
∆νs,l are no longer as simple. There exists also curved correlations between different timescales such as exhibited
between ∆νs and ∆νl. An exceptionally interesting correlation manifests in parameters ∆νs and τs, having an
apparent "cut-off" point manifesting in a harsh line in the scatter plot between these two values.

Much of the justification of correlation holds for glitch C also. Any parameters which are differently correlated
are to be expected also, particularly between response parameters as the number of restrictions is loosened
as the glitch complexity increases; there is a much larger set of models which can describe any given set of

†As in the glitch is modelled to have lost ∼60 rotations before the first post-glitch TOA.
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Figure 4.4: Contour plots showing the distribution of retrieved glitch parameters for glitch C, split into individual
two dimensional plots separated by AC and retrieved component (i.e. base parameters, recovery parameters for
short and long responses). Contour lines differ between observation strategy as shown in the legend. The inner
contours contain 67% of points and outer contours contain 99% of points. The shape of the underlying point
scatter is maintained.

observations. Specific to glitch C we expect there to be more than one unique solution: exponential responses
are non-orthogonal to one another and are therefore inherently correlated.

The correlation between parameters τs and ∆νs exhibits some unexpected structure manifesting as a harsh
diagonal. On one side of this line there are no data points indicating some limit on either of these two parameters,
having a knock-on effect to those which are most correlated. It is useful to note that the minimum value (i.e.
a point which lies on this line) of ∆νs when τs = τs,true is perfectly equal to 0, suggesting that ∆νs cannot be
negative in software. However, it is seen that for other values of τs, negative values of ∆νs are allowed. The
gradient of line is interestingly also equal to the magnitude of ∆νs (in the units of the axis). Due to time
constraints, we simply decide that this emergent property is a result of limits in magnitudes on TEMPO2 since
it has no major effects on the results or other correlations, but note that it requires further investigation before
future experimentation.

5 Discussion
The most obvious point to mention is that across the simpler glitches, glitch A and glitch B, there is little
to no discernible difference between the quality of retrieved parameters and the spread (standard deviation)
of the simulations at high cadence. This tells us that in these scenarios, there is little reason not to observe
with a non-periodic observation cadence, as to avoid the degeneracy found by Dunn et al. (2021) [4]. The limit
by which this finding holds appears to be lie somewhere between an average cadence of 15d and 30d, though
the divergent quality of worse strategies has already begun to emerge in the 15d cases, visible in the increased
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Figure 4.5: A corner plot for for glitch C collated from ∼40,000 data-points measured using all three strategies
at an AC of 5. Note strong correlations between parameters ∆ν and ν, ∆ν and ∆νl; there are also strong
anti-correlations in parameters ∆ν and epochg (tg), ∆νl and epochg (tg); the latter of them appearing to be
analogue to the similar correlation in glitch B. Correlations with ∆νs are particularly interesting, appearing to
increase in strength at higher ∆νs.

sample standard deviation for all glitch parameters in the geometric case for glitch B. A similar conclusion can
be drawn from the complex glitch C, though the strategies diverge in quality much sooner.

In the less frequent observations of glitch C, the results retrieved for the timescale and magnitude of fast
recovery as shown in Table 4.2 are profoundly wrong. Understandably, when a glitch has the ability to occur
and fully decay between two observations, any fitting algorithm will simply be making guesses. We do note
that the results themselves are still centred around the correct value, but we put this up to one main reason:
the value we feed to the fitting algorithm is already the correct timescale as mentioned in Section 3.3. This
assumption means that even random guesses away from the value would, when averaged, return the correct
parameter. The fitting algorithm attempts to find a solution with a smaller χ2

R by taking steps in increasing
or decreasing τs; Sometimes as a result of parameter correlations there will be a suitable alternative minima
nearby, but on average the guess already lies on the minimum point. There is a case to be made that in further
experimentation, giving only an estimate of the timescale to the fitting algorithm, it would reasonable to assume
that even in extremely infrequent observation cases, short timescale response activity should still be identifiable
some of the time. As mentioned in Section 3.2, in strategies which exhibit periodic behaviour, there are good
and bad regions of higher and lower local cadence: a glitch occurring during a higher cadence time may have its
shorter exponential parameters resolvable. This being said, a glitch which occurs near a periodic observation is
similarly more easily estimated.
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Parameter AC Arithmetic Geometric Logarithmic Periodic
5 0 ± 8 0 ± 12 0 ± 11 0 ± 5

⟨∆ν⟩ − ∆νtrue (×10−10) 15 0 ± 23 0 ± 20 0 ± 29 0 ± 16
30 1 ± 47 −1 ± 78 1 ± 54 1 ± 31
5 0 ± 10 0 ± 10 0 ± 9 0 ± 9

⟨∆ν̇⟩ − ∆ν̇true (×10−20) 15 −1 ± 18 0 ± 14 0 ± 18 0 ± 16
30 0 ± 32 0 ± 27 0 ± 32 0 ± 26
5 0 ± 2 1 ± 5 1 ± 4 0 ± 2

⟨∆νs⟩ − ∆νs,true (×10−8) 15 0 ± 110 4 ± 30 0 ± 170 2 ± 11
30 ∼ 0 ± 5 × 105 ∼ 0 ± 5 × 106 ∼ 0 ± 4 × 106 0 ± 1000
5 0 ± 3 0 ± 6 0 ± 4 0 ± 2

⟨τs⟩ − τs,true 15 −2 ± 170 0 ± 54 3 ± 309 0 ± 21
30 ∼ 0 ± 4 × 105 ∼ 0 ± 8 × 106 ∼ 0 ± 3 × 106 0 ± 1300
5 −1 ± 69 0 ± 110 0 ± 99 1 ± 48

⟨∆νl⟩ − ∆νl,true (×10−11) 15 3 ± 202 4 ± 180 10 ± 264 5 ± 14
30 30 ± 430 70 ± 710 40 ± 500 20 ± 290
5 0 ± 8 0 ± 9 0 ± 8 0 ± 8

⟨τl⟩ − τl,true (×10−1) 15 0 ± 16 0 ± 13 0 ± 17 0 ± 15
30 0 ± 39 0 ± 33 0 ± 43 0 ± 30

Table 4.2: A table showing the average distance from the true values retrieved by TEMPO2 when fitting glitch
B. Errors quoted are standard deviations of each sample of ∼ 10, 000 points. It is expected that the the mean
difference is around 0 and the standard deviation represents the spread of the data, varying massively in some
cases. True values can be found in Table 3.2. Note that values are scaled for comparison with others in the
same table, for comparison to retrieved parameters in Table 4.2 adjustments must be made as some parameters
are magnitudes larger. Values are rounded to similar precision, but no more than two significant figures (on the
standard deviation).

Realistically, in the cases where there are two exponential recovery components present in a glitch, but the
observation cadence is infrequent enough where in many cases a the short component is not visible, no human
would decide to employ a fitting algorithm to fit for more than one component unless they had further knowledge
or justification to do so∗. Additionally, the inclusion of a quick response in low cadence scenarios can "confuse"
various fitting algorithms. TEMPO2 does not apply restrictions on most fitting values (such as ensuring that
timescale is always positive) and so it will make spurious claims that are unlikely to be true. In glitch C, this
was most commonly exhibited as ∆νs having a tremendous negative magnitude with an exceptionally long
timescale. Through correlation, to counteract, ∆ν was equally mis-estimated in such scenarios. This caused
large deviations above what was expected from the glitch B case. In further experimentation, false solutions
out by many magnitudes could be refitted with fewer exponentials, or the faster response parameters may be
nudged towards more sensible solutions as a human might in manual glitch fitting.

Armed with this knowledge of unaccounted complexity in glitch C, parameter retrieval on values relating to
the shorter timescale should be ignored, and the quality of all other results cannot be compared to their glitch
B counterpart. However, as this phenomena emerged to an extent for all strategies, they can and should still be
compared to one another, particularly at the frequent observation case. It is clear from the contour plot, Figure
4.4 that the parameter estimation in ∆ν̇ is better than the same for ∆ν when comparing across all strategies.
Strategies such as geometric and logarithmic appear to spread much more widely in their distributions on the
contours and values of standard deviation, with periodic and arithmetic observing taking the lead. A similar
sentiment was echoed in the results of glitch B to a lesser extent, potentially suggesting that the value of Tmax,
i.e. the maximum gap between observations, plays a more important role than expected. We can extend this
interpretation to the 30 AC case, where the value of Tmax follows in increasing order: periodic, arithmetic,
logarithmic and geometric. The data set of average cadence of 30 days is the only set of simulations where the
value of Tmax is different between all strategies and it follows that for nearly all parameters across glitch B and
C in the 30d AC case, the standard deviations also follow in worsening order: periodic, arithmetic, logarithmic
and geometric. The only parameters estimated which do not adhere to this observation are ∆ν̇ for glitch B and
C, and τl in glitch C. In these outliers all strategies appear to perform somewhat similarly.

It must be said that it is not unjustifiable for Tmax to play a larger role in data spread than initially thought.
Altering the value of Tmax changes the probability of a glitch landing in a good or bad region of observation.
With reduced probability for high local cadence observations to coincide with the time of the glitch, tg, the
probability for TEMPO2 to estimate glitch parameters more accurately to the true values is reduced. It is
unfortunate that, as a result of the strategy definitions, it is particularly difficult and sometimes impossible to

∗Such as prior glitches exhibiting predictable behaviour.
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find values of k at constant Tmax which simultaneously allow for all strategies to offer equal average observations
per unit time and suitably showcase the uniqueness of the strategy†. As is seen in Table 3.1, it can be done
for AC = 5, 15d in the geometric and logarithmic cases. However, in all cases, periodic always has a value of
Tmax = kp and arithmetic must always have a reduced Tmax such that its AC can be comparable to the other
strategies.

Looking again at parameter estimation on ∆ν̇ and τl, this time at medium cadences on glitch C, Table 4.2
shows that geometric observing sometimes even exceeds the abilities of periodic observations in these parameters.
This is inverse to the glitch B case, where the geometric strategy was worse in all cases across all cadences,
suggesting that there is a link between strategy quality and glitch complexity. In the glitch B case regarding the
same parameters, it can be seen that they are the only two for which geometrically spaced observations are able
to maintain some degree of accuracy (notice in ∆ν and τd, the geometric strategy estimations exhibit a spread
up to ∼102 times larger than periodic or arithmetic. This might suggest a given strategy having preference
towards specific parameters, having a knock-on effect to the quality in retrieval of any correlated values as
described in the corner plots: Figure 4.2 and 4.5.

6 Conclusion
We can draw several conclusions from this experiment. All of the following must assume that our assumptions
hold.

1. At a high average cadence of observations, there is some evidence to suggest that the degeneracy in glitch
parameters detailed by Dunn et al. (2021) [4] can be avoided by using an observation strategy alternative
to periodic, such as logarithmic, geometric or arithmetic; with minimal to no impact on the quality of
retrieved parameters.

2. There is additionally some evidence pointing towards a link between the maximum allowed observation
gap and quality of estimated parameters, consistently allowing periodic and geometric, the two strategies
with the lowest maximum observation wait time, to retrieve the best glitch parameters most consistently.

3. As the average cadence of observations becomes less frequent, it can be seen that in all cases presented,
a periodic observation strategy will retrieve the most accurate glitch parameters from TEMPO2. We
conclude that this is as a result of the glitch only being a maximum of half the TOA gap away from the
closest TOA, whereas with other strategies this distance could be greatly inflated some of the time.

4. In some scenarios, geometrically distributed observations outperform periodically distributed observations
in some parameter estimation, suggesting the existence of potential "preferred parameters" for a given
strategy.

Further investigation on all of the above points is being worked on in the coming year (2025) as we begin
to try and reduce the number of assumptions we make, allowing the ability to discern if the conclusions we
have made thus far are emergent properties of the points stated in Section 3.3, or if they are properties which
hold in real pulsar astronomy. For instance, investigation into the potential existence of correlations to Tmax
could be achieved with the introduction of a new observation strategy: random. Random observations within a
given time-frame would average to a specific determined cadence; the maximum distance between two successive
observations similarly would be governed by a Tmax.

Most importantly, we next want to reduce the number of assumptions we make. The harshest assumptions we
make in Section 3.3 which limit the significance of any conclusion we might be led to assert are the non-existence
of timing noise and allowing perfect pulse numbering. Working with timing noise is a process intrinsic to pulsar
astronomy and removing it completely, though justified in some scenarios, severely limits the usefulness of
conclusions. Many pulsars exhibit timing noise, particularly those which are seen to glitch somewhat frequently
[23]. The assumption of known pulse numbers removes some degree of ambiguity in solutions. A more realistic
scenario is where we are not 100% sure if a pulse or number of pulses have been unaccounted for between two
observations, and so increases the complexity of fitting and algorithms required to automate fitting across many
differently setup pulsars.

Removing constricting assumptions like these means we must remove any assumptions we have made as a
result of them. Timing noise being absent allowed us to reasonably believe that bigger and smaller glitches
(within reason) would bring us to the same or similar conclusions as those from the glitches we investigated. This
would not hold in a scenario where different sizes of glitches have differing probabilities of being completely lost
or unidentifiable within the timing noise. There are many such cases where real glitches have gone unnoticed
for years.

†Some values of k which follow rules set out can be poor representations of a strategy. For instance a sufficiently large geometric
constant may provide the desired average cadence, but by only alternating between two values: ∆Tstart and kg∆Tstart, for the next
value in the sequence, k2

g∆Tstart, would exceed Tmax.
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In real pulsar astronomy, it is often the case where cadence is increased in the time following a glitch in order
to re-establish an accurate enough model. Simulating similar behaviour would be more accurate and opens up
the possibility of differing pre and post-glitch ideal strategies. Similar to following the discovery of a new pulsar,
reducing cadence with time may be a useful tool in observing many tracked and glitching pulsars.

If strategies do indeed have preferred parameters for which they can estimate more effectively, there exists
motivation to investigate some of the mathematical reasoning behind these links. Strategies with small variations
from each other should be trialled at constant AC, such as with different values of k. There may even be some
correlation to the direction in which the strategy is sampled: what happens if a strategy halves its observation
gap after each measure before resetting at some minimum TOA gap? Similarly, there exist equations not
described here for cadences which vary sinusoidally or following some other function. There are many other
avenues to explore alternative observation strategies.
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